
Spacewire on Earth Orbiting Scatterometers
Alex Bachmann, Minh Lang, James Lux, Richard Steffke

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 9 1 109

Bachmann@ipl.nasa.gov,Minh.Lang@jpl.nasa.gov, James.p.Lux @id.nasa.gov, Richard.Steffke@ipl.nasa.gov
(818) 354-5087, (818) 354-1556, (818) 354-2075, (818) 354-3533

Abstract-The need for a high speed, reliable and easy to
implement communication link has led to the development
of a space flight oriented version of IEEE 1355 called
Spacewire. Spacewire is based on high-speed (200 Mbps)
serial point-to-point links using Low Voltage Differential
Signaling (LVDS). Spacewire has provisions for routing
messages between a large network of processors, using
wormhole routing for low overhead and latency.
[Additionally, there are available space qualified hybrids,
which provide the Link layer to the user's bus]. A test bed
of multiple digital signal processor breadboards,
demonstrating the ability to meet signal processing
requirements for an orbiting scatterometer has been
implemented using three Astrium MCM-DSPs, each
breadboard consists of a Multi Chip Module (MCM) that
combines a space qualified Digital Signal Processor and
peripherals, including IEEE- 1355 links. With the addition of
appropriate physical layer interfaces and software on the
DSP, the Spacewire link is used to communicate between
processors on the test bed, e.g. sending timing references,
commands, status, and science data among the processors.
Results are presented on development issues surrounding
the use of Spacewire in this environment, from physical
layer implementation (cables, connectors, LVDS drivers) to
diagnostic tools, driver firmware, and development
methodology. The tools, methods, and hardware, software
challenges and preliminary performance are investigated
and discussed.

1.
2.
3.
4.
5 .
6.
7.
8.

TABLE OF CONTENTS
INTRODUCTION
SPACEWIRE STANDARD
ASTRIUM MULTI CHIP MODULE
SMCS
SPACEWIRE vs. ALTERNATIVES
SCATTEROMETER AND TESTBED
TESTING SPACEWIRE
CONCLUSION

1. INTRODUCTION
The need to send data reliably and quickly from subsystem
to subsystem on spacecraft has led to various data transfer

-~

' 0-7803-7231-X/01/$10.00/0 2002 IEEE

implementations. Serial methods are popular as they reduce
the wire and pin count.

Spacewire is a high-speed serial communication link
standard, which set specifications for the various layers. Its
progenitor is IEEE1355 the commercial communication
link, which is very prolific. Spacewire adds LVDS and
specifies different space qualified cable and connectors. We
have developed a testbed for the next generation orbiting
scatterometer [1][2] which uses the Astrium Multi Chip
Module containing theTSC2 1020 DSP, Digital peripheral
controller and a Spacewire (the SMCS332) asic. Rather
than attempt to implement some other inter processor link,
we used the IEEE-l355/SpaceWire link as the
communication method between the DSP processors.
Alternative technologies used in the past have strong
heritage but technical or implementation limitations reduced
or excluded them as an option on the testbed.

2. SPACEWIRE STANDARD
The main purpose of the Spacewire standard is to ensure
compatibility between different equipment, in order to
facilitate integration, testing, reduce time-to-market, cost
and re-use in different missions [31.

Spacewire (proposed as IEEE 1355.2) is based on the IEEE
1355-1995 standard; it is a full-duplex, bi-directional, serial,
point-to-point data link with a raw data rate of 200Mbit/sec.
It encodes data using two differential signal pairs in each
direction. A total of eight signal wires, four in each direction
[4]. Each pair is twisted, shields of the four individual
twisted shielded pairs are insulated from one another, and
from the overall shield. encompassing the whole bundle.
Connections are made with 9 pin micro D-type connectors,
which have strong flight legacy. The signaling method is
LVDS .

LVDS
Spacewire, allowing communication over distances of 10 m
or more, uses Low Voltage Differential Signaling (LVDS).
LVDS are current mode switched devices and require a
good match between the characteristic impedance of the
transfer medium (Le. 100 to 100 ohm twisted pair) and the
shunt termination resistance at the receiver end. Given the
low voltages involved (350mV) requires more attention be
paid to grounding, common mode rejection ratio (cmrr) and

EMC design. This means balanced signal skew between the
differential signals needs to be maintained by keeping the
line lengths of similar distance. However the “constant
current loop” signaling also helps reduce radiated noise and
as a side benefit allows detection of opens or shorts in the
cable.

Each link consists of two pairs of lines per direction for a
total of 4 pairs or 8 individual wires. One of the differential
pairs carries the data the other carries a strobe signal.
XOR’d these two signals generate the clock. The strobe
signal is dependent on the data, when the data remains
constant from one data bit interval to the next a strobe
transition occurs. This type of coding is called Data-Strobe
(DS) encoding. This coding stream is diagramed below.

Data 1 0 1 0 1 0 4 1 0 1 0 1 0 l i l i l 0

D

S

I
I
I I

I ,
I I
I 1
I , I ,

I , I ,
I ,
I ,
I ,
I , I ,

I
I
I I

1
Fig.1 Data-Strake (DS) Encoding 1 I 1 1

Two of the advantages to this type of coding are:

1. Since the resulting data is clocked on both the
positive and negative edges of the recovered clock,
one gets twice the bit rate as versus the more
traditional leading edge clock with synchronous
protocol.
And since the strobe signal gets switched only
when the data bit was the same as the previous data
bit, the di/dt type noise introduced into the system
is much lower.

2.

Any communication technology is broken down into levels
which are characterized per a specification. The Spacewire
levels are described below.

Vurious Space Wire Protocol Levels
1 Level 0: Physical Level
1 Level 1: Signal Level
1 Level 2: Character Level
1 Level 3: Exchange Level

Level 4: Packet Level
1 Level 5: Transaction Level

Physical Level-describes the physical interface between
nodes in a link. This includes mechanical and electrical
specifications, covering items like connectors and cabling.

Signal Level-describes the make up of the electrical
signals going across a link; including voltage amplitudes,
encoding (in this case DS) see Figure 1 above, fault
protocol, and data rates

Character Level-describes how a basic character is defined
using bits to build the basic unit of a character. Spacewire
defines a control character and a data character. The control
characters are made up of a parity bit, a data control flag (set
to one) and a two-bit control code. These in different
combinations indicate the following and are used to
facilitate the exchange level.

Flow Control (FCT)
Normal End of Packet (EOP)
Error End of Packet (EEP)

1

1

1 Escape (ESC)
1 Null (ESC + FCT)

The data character contains a parity bit, the data control flag
bit (set to zero) and eight bits of data transmitted least
significant bit first.

Exchange Level-describes how the data will be sent across
the link. It contains the format or steps necessary to
establish and maintain communication between any two
nodes. This level contains the following elements.

Initialization
1 Flow Control
1 Detection of Parity Errors
1 Detection of Disconnect Errors

Link Error Recovery 6@” Initialization starts by placing both nodes in kno state,
then checking for errors and followed by the s n ing out of
NULL’S, ending with the transmission of Data, FCT and
Nulls as required.

Flow control characters control the availability of each node
in a link. They indicate whether each side of node has space
available to accept new incoming data thus avoiding
overflow and loss of data. They are sent every n characters
(8 in this case). Once received they are not stored in the
receive memory or buffer. Thus a transmitter will not send
any characters until it has received one or more FCT’s to
indicate that the receiver is ready. The transmitter keeps a
credit count of the number of characters it has been
authorized to send. Each time the receiver sends an FCT the
transmitter increments its credit counter by 8. When it
transmits a character it decrements its credit counter by 1. If
the credit counter reaches zero the transmitter will stop
sending characters until it receives another FCT. The NULL
character is used to maintain the connectivity between two
nodes. In order to remain connected, the nodes at both ends
of a link must send NULL characters continuously when
they do not have data to send.

Detection of ParityDisconnect errors will result in the
transmitted data to be erroneous or even missing. Therefore
when Spacewire detects one of these it will initiate a
response accordingly. A disconnect error is registered when
the time interval from the last transition on either the data or
strobe signal exceeds the disconnect-detection time. If an
error is detected Spacewire follows the Link Error
Recovery sequence.

Link Error Recovery starts with one node of the link ceasing
transmission. This will cause a disconnect at the other node.
This node then also stops transmitting. This generates a
disconnect error at the original node. This procedure is
known as “exchange of silence”. Once this occurs both
nodes cycle through the reset sequence (ErrorReset,
Errorwait, Ready) ending up in the Ready state ready to
begin operation. If a error continues the working node will
attempt to establish the link by sending NULL’S. If it does
not receive a response due to the error then the above cycle
is repeated.

Packet L e v e l i s a sequence of characters in a specific order
and format. (in this case Hdr-Data-EOPEEP) The
Header dictates the destination of the packet. Data is the
relevant information. Data can be any number of characters.
And the EOPEEP indicates the end of the packet.

Truizsaction Level-describes how a number of packets are
assembled to perform a task or function.

These levels define and describe the elements necessary to
build a SpaceWire link from the lowest level to the highest.
Other protocols can be embedded in a Spacewire packet
such as MPEG, IP, ATM. This would be done at the
transaction level.

3. ASTRKJM MULTI CHIP MODULE
The Astrium Multi Chip Module (MCMDSP) is a radiation
tolerant hybrid that incorporates a TSC21020F Digital
Signal Processor, the SMCS332, and a Digital Peripheral
Controller, which allows various peripherals to be
connected to it making it a possible contender for a turnkey
DSP system requiring limited hardware and software design
man-hours. Fig. 2 shows the layout of the evaluation board
containing the hybrid chip. Some of the hybrid features are:
I

I

Peripheral Controller ASIC
IEEE 1355 (Spacewire) High Speed lSOMbit/s serial
links
JTAG
User Interface UART, FIFO, I/O port
Radiation tolerant to 5Okrads(Si) dose
Latch up immunity better than lOOMeV
SEU LET threshold better than 15 MeV*cm2/mg
6 watts at 100% load
128Kword Data Memory
128Kword Program Memory

The. Scalable Multi-Channel Communication Sub-system
(SMCS) is a scalable and flexible high performance serial
communications controller with fault tolerant features [5]. It
was developed by and is heavily used by the European
Aerospace community, it is incorporated into the Astrium
MCMDSP hybrid and its features are listed below [6] .

Main FeGetures
J

J
J
J

J

J

J

J
J

Three IEEE Std 1355-1995 links (DS-LinkTM):
full duplex, up to 200 Mbit/s (in each direction)
point-to-point links
High-level packet oriented data transfer
Autonomous command execution
Fault tolerance features (link disconnect detection ,
parity check at token level, checksum generation)
Emphasis put on high-throughput with low CPU
interaction; scalable interface allows integration
with any CPU type (data bus width of 8 , 16 or 32
bits)
link disconnect detection and parity check at token
level

Scalable interface to host CPU (HOCI):

Data transfer via FIFO (internal)
Interrupt capability for host CPU

Communication Memory Interface (COMI):

J
J
J
J

J

J

J
J
J

J

J

Data transfer via DPRAM (external)
64 Kwords of DPRAM addressable
Optional sign extension
Up to two SMCS on one DPRAM (internal
arbitration)

Two operation modes (per channel):

Transparent mode:
No interpretation of data on link, variable packet
length

SMCS protocol mode:
Variable packet length, command execution, reset
capability

Other features:

Configuration via host CPU or over link
Dual endian support
Power save mode (automatic transfer rate reduction
for null tokens)
JTAG test capability (internal link loop back for
test purposes)
Checksum generation / check at packet level

Fig 3 Scalable Multi Channel Subsystem (SMCS) 332 Block Diagram

The Astrium MCM contains the SMCS332. The SMCS
contains the link layer necessary to implement the multiple
links. Its associated manual described the registers used for
configuring its various functions. By writing and reading to
these registers via the DSP drivers could be written and
called by C routines as required.

A block diagram of the SMCS is shown in Figure 3. The
three channels are shown with channel one blown up to
illustrate more detail.

5. SPACEWIRE vs ALTERNATIVES

Although selection of the MCMDSP forces us to use
SpaceWire as the communication link, it turns out
Spacewire has many advantages over other communication
options. Some of the previously used subsystem
communication technologies implemented at the Jet
Propulsion Laboratory are MIL-STD- 1553, RS-422/485,
Backplane Bus (VME), FireWire 1394. Each of these has its
own unique advantages over the other.

The testbed requirements require multiprocessor
communication among several processors sending timing,
status, commands, housekeeping and science information
back and forth. This must happen in real-time. Therefore the
link must be fast, reliable and maintainable. The initial rate
that the link must communicate at was determined to be
1.25Mbh with the option to go faster. This made the RS-
422 questionable and eliminated MIL STD-1553
technology.

IEEE 1394 Fire Wire
IEEE 1394 (Firewire) is a commercial technology being
explored as a potential high-speed serial link for flight
projects. With speeds up to 400Mb/s utilizing differential
LVDS it has strong potential to be useful as a multi
processor communication link. The space flight legacy on it
though is nonexistent. Furthermore preliminary test have
shown it to be difficult to implement due to its sophisticated
exchange layer. Spacewire has a much simpler exchange
layer resulting in lower gate count and higher reliability [9]
not to mention a space qualified link layer already exists via
the SMCS. As well as meeting the Scatterometer testbed
requirements Spacewire can be a possible candidate for
competing communication technologies in future missions.

A backplane bus might be feasible for multiple processor
communication. VME speeds of 64MBytesh and. the newer
VME320 backplane capable of 528MbytesIs at 66Mhz 21
slots or IGbyteIs at 133 Mhz. with 10 slots 171 make VME a
possible contender at a technical level. But in addition to
various other limitations such as mass, power and load
limitations a backplane involves greater development

overhead than a comparable serial communication plan
severely reducing its appeal.

The alternatives mentioned above also suffer from the
commercial to flight transition problem. Often when a
commercial technology is adopted to be used on flight
projects it needs to be modified to overcome one
shortcoming or another. By doing this adherence to the
specification is broken leading to unforeseen problems, such
as commercial development tools not working as intended.

A major advantage of SpaceWire is the mass and volume
saving for a given bandwidth. High. mass and volume as
well as power usage end up always being a concern on
Spacecraft. Spacewire is fair ahead over competing
technologies for given performance. Implementing a fault
tolerance will become easier with the simpler exchange
level. Finally Spacewire via the SMCS has a flight-
qualified device not yet available from competing high-
speed serial links.

6. SCATTEROMETER AND THE TESTBED
The Spacewire links are part of the MCM hybrid, which is
used, in the larger context of a scatterometer prototype
being developed to replace the existing Seawinds project
[81.

The prototype is exploring a new technology in that it will
have several Digital Signal Processors configured in a
multiprocessor mode used to process the return echoes from
ocean waves. There will be 3 or 4 receive processors
depending on the final processing load, and one transmit
processor. Each receive processor will be required to
establish two-way communication with the transmitter. A
timing reference is transmitted to each receiver which in
turn utilizes this timing data to retrieve information about
the returned echo pulse. After processing the echo data the
receiver sends its results back to the transmitter via
Spacewire for eventual downlink. The Spacewire link will
be used by the transmitter for sending timing data to the
receiver in order to help establish pulse-to- pulse
correlation, the transmitter will then receive science data
back from the receivers via Spacewire. The transmitter then
forwards the data back to a Command and Data Handling
System for downlink using RS 422[2].

The transmit and receive processor perform different tasks
at a high level, the driver is written to support either. The
higher-level software then accesses this driver. An interrupt
is generated any time there is a transmission, reception or an
error. The Interrupt Handler Routine then reads a register to
determine if the interrupt was caused by a transmission,
reception or error. Based on this information the driver
software performs the tasks listed in the driver software
section below.

Fig.4 Front Panel with Micro D-type connectors

Fig 4 shows the Front Panel of one of the processors. Shown
are the three available links, each of which contains an RX
and TX for full duplex data transfer. The monitor outputs
allow a test program to observe the traffic on a particular
link. Connections between processors located in different
chassis are made with Spacewire specified cabling.
Interconnects are made with the specified Micro-D type
connectors although the MCM Spacewire port uses TTL
and a standard D-Type connector.

The testbed’s first attempts utilized a new Physical layer
TTL to LVDS conversion board utilizing high-speed
differential interface and 9 pin micro D-type connections.
The initial single ended implementation led to heavy ground
bounce. While a solution was attempted via implementing
twisted pair cable, a temporary substitute was created. A
unshielded CAT5 type cable with standard D-type
connectors was used to communicate between the MCM’ s
directly placed 5-10 feet apart using just the TTL ports. This
worked fine for low speeds. On the conversion board the
differential drivers and receivers used were 90C31 and
90C32. These devices have a maximum bandwidth of 155
Mbps, The interface to and from these devices to the SMCS
ASIC used unbalance twisted pair with one of the signal
lines in each pair connecting the signal ground on the
conversion board to the signal ground on the DSP
breadboard. A source termination of 200 ohms was used on
the driver signals going into the DSP. Prior to doing this
“ground bounce” and various fast rise time noise related
problem prevented us from using the physical layer
conversion board.

Standard 9 pin micro-D connectors were used to provide
front panel access to the LVDS signals. Cabling required to

meet the basic specification was more specialized than that
used on past projects and had to be special ordered.
Video/Audio2 cable with 1 10 ohm characteristic impedance
with both an internal shield for each twisted pair and a
group shield as defined by the Spacewire spec. was used.
Figure 5 shows a completed testbed cable

Fig. 5 Testbed Spacewire Cable

At the same time we decided to employ LVDS as the
physical layer we continued fine-tuning the driver software.
This also was considered a strong contender for contributing
to our problems with initial link establishment early on.

The signal characteristics at different baud rates of the new
configuration are shown in Figure 6 a. thru f. These
measurements were made on the MCM TTL end of the link.

BELDEN Part #1803F

Figure 5(a.) is at 10Mb/s, (b.)20Mb/s and so in 10Mb/s with
(f.) showing the 6OMbls signal. The results indicate that
further work is required on our physical layer to be able to
meet the 155Mb/s speed capabilities of the SMCS, this will
most likely involve high speed digital design techniques. A

future plan is to repackage the DSP breadboards with the
physical layer incorporated in the breadboard itself.

a. 10 Mb/s D. LU lVIL)/S

e. - _
FIGURE 6(a,-f.) Data and Strobe Signal shape as Baud Rate increases

Space Wire Driver
There was a need for a driver that could be called by an
application or executive program when Spacewire activities
were required. The Spacewire driver routine on the receiver
and transmitter are the same. Each is written mostly in C
with time critical portions written in assembly language. It
is interrupt driven for critical tasks and state driven for the
rest. Runtime statistics are collected and can be
enableddisabled at compile time. It is an Application
Programming Interface (MI) that allows the various modes
of the SMCS to be exercised. This includes

1 Initializing the master
1

1 Set baud rate
1 Stopping a link

Starting a link as master or slave

And several more functions not listed here.
The Driver API is implemented utilizing the following:

1 Controlling and interfacing with the SMCS332 are
through a set of 89 registers that are memory
mapped to the data memory interfaced to 21020
DSP. Not all registers are used in this driver

1 32-bit Host Control Interface (HOCI),
Communication Memory Interface (COMI) and
transparent mode are chosen for this
implementation
Start up sequence are controlled by higher level
application and the proper sequences as specified
in EEE-1355 are to be followed

Sending data
When a link is started and established, a flag is set to true
for that link. A message is sent that the corresponding link is
ready to transmit. The driver clears the flag, moves the data
to dual-port ram on the SMCS and starts the transmitter,
EOP is attached at the end of message. After the
transmission is completed, an end-of-transmit interrupt is
generated. The interrupt service routine (ISR) then resets the
flag.

Receiving data
When data is received on any link, the SMCS332 puts it into
dual-port ram using the preprogrammed COMI interface.
Since every packet is terminated by EOP, an interrupt is

generated when the EOP is received. Since the ISR is
required to stay as short as possible as to not interrupt the
critical timing of the echo processing, moving received data
from dual-port ram to the driver’s ring buffer will be done
outside of the ISR. When an EOP interrupt is received, the
ISR sets a flag to indicate that there is data ready to be
moved, when the higher level application is done with its
critical computations, it calls a function periodically and
tells the driver to move data from dual-port ram to a ring
buffer. The size of this ring buffer can be as large as
memory allows, the default size is 8192 bytes. The ring
buffer data is read first-in-first-out. When the ring buffer is
full or near full and a new incoming message doesn’t fit, the
new message is dropped so that it won’t corrupt previously
received valid data in the buffer. The application can check
the total number of 32-bit words currently sitting in the ring
buffer by calling a function which checks to see if data is
available. The function returns an integer indicating the
number of unprocessed data words received. The higher
level application calls another function to unload data from
ring buffer to application. Another function returns the
number of words successfully unloaded.

Driver Error handling
All links were programmed to auto-restart when initialized.
A parity/disconnect error generates an interrupt. A
disconnect/parity can happen during the transmission or
receipt of a messagdpacket. By default, the transmit section
is reset by the SMCS after a disconnect error has occurred,
the receive section is not. The ISR therefore rearmshestarts
the receiver and new transmidreceive transfers can be
started.

Transfer results
Figure 7 is a graph showing the end results of our software
and hardware, it shows the measured disconnect errors
reported by the SMCS as the baud rate is increased. The
greatest contribution to these errors is most likely a result of
our physical layer conversion board. As can be seen from
the signal characteristics in Figure5 a,-f. there is significant
degradation of signal quality with baud rate increase. The
link could not be reliably be maintained above 60Mb/s.

DISCONNECTS ERRORS VS. BAUD RATE

1 .OQOE+OO

a
a W
v) 1.000E-02
F
W z z
8 1.OOOE-03

i
1.000E-04

0 10 20 30 40 50 60

BAUD RATE (Mbitds)

Fig. 7 Disconnect errors vs. baud rate for testbed MCM implementation

7. TESTING SPACEWIRE
Although the initial main test of our SpaceWire link was
simply, to determine if it works or not, we have shown that
we can keep errors down while transmitting our data. A
more thorough test will have to be developed to evaluate its
performance under margin, stress, failure, and anomalies.
Especially when this evolves to a flight project.
A LABVIEW application has been written that utilizes a

commercial PCI SpaceWire card from 4-Links and included
associated driver software to support interfacing to the
SMCS. By using local loop back tests using two ports on the
card initial task were to establish communication between
the ports. This verified our cabling construction as well
exercising our knowledge of the signaling protocol. This
setup was then used to interface to the SMCS and confirm
two-way communication between different systems. A
driver software configuration anomaly was found this way.
Future use will include using the LABVIEW program as a
monitor. Part of the SpaceWire driver software function will
record values such as

1 Number of Packets received
1 Number of Packets sent.
m Number of Parity errors
1 Number of dropped links

Total words transmitted

This data will be used to characterize the quality of the
SpaceWire link as well as help troubleshoot science data
inconsistencies.

8. CONCLUSION

By adopting an MCMDSP with Spacewire technology we
are introduced into a new method of transferring serial data
from one subsystem to another. SpaceWire has been proven
to work reliably, is easy to implement, has a flight legacy
and proven to be a more cost-effective high performance
solution than competitive technology such as FireWire
1394, RS-422/485 Mil 1553 or a bus. The existence of rad-
tolerant hardware enormously increases its appeal. There is
strong potential for SpaceWire on future flight missions.

ACKNOWLEDGEMENTS
The work performed in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

We would also like to thank Astrium, specifically Pierre-
Eric Berthet for the extended loan of the MCMDSP hybrids
on the evaluation boards.

REFERENCES
[11 MSPENCER, et al,” Improved Resolution Backscatter
Measurements with the Seawinds Pencil-Beam
Scatterometer” IEEE Transactions on GeoScience and
Remote Sensing Vol. 35, No.1, January 200

[2] DCLARK, J.LUX, M.SHIRBACHEH, “Testbed for
Development of a DSP-Based Signal Processing Subsystem
for an Earth-Orbiting Radar Scatterometer” submitted for
presentation at IEEE Aerospace Conference, Big Sky
Montana, March 2002

[3] http://www. 1355-association.org/

[4] ECSS-E-50-12 DRAFT 1, “Spacewire-Links, Nodes,
Routers, and Networks”, European Cooperation for Space
Engineering, March.200 1

[5] ”SMCS332 USERS MANUAL ISSUE 2”, DSS,
DIPSAPII, OM1 April 04 1999

[6] u//www.estec.esa.nl/tech/spacewire/

[7] M HECKMAN, D BERDING, “Using VME320 back
plane technology to speed up your VMEbus system”,
VMEbus Systems, 26-29, August 2001

[8] A. BACHMANN, et al,” Multiprocessor Digital Signal
Processing on Earth Orbiting Scatterometers”, IEEE
Aerospace Conference, Big Sky Montana, March 2001

Minh Lung is a member of the technical staff in JPL‘s
Flight Systems Section. He ealned a Bachelor’s degree in
Computer Science from California State University,
Northridge. He has been involved in design and
development of embedded software in JPL since 1988.

James Lux is in the Spacecraft Telecommunications Section
at JPL. Scatterometers design is only one of Jim’s
diverse interests, which range from man-made tornadoes to
solar eclipses to high performance digital radio links.

[9] S.CHAU “A Design-Diversity Based Fault-Tolerant
COTS Avionics Bus Network“ submitted for presentation at
the Pacific Rim Dependable Computing Conference, South
Korea Dec.17-19, 2002

Richard Stefj’ke graduated California State Polytechnic
University Pomona BA Aerospace Engineering. He was
lead test engineer on NSCAT DSS, which was the first
scatterometer to fly a DSP.

Alex Bachmann has been involved in Spacecraft and
Ground System Test and Integration for 15 years. His
interests at JPL include developing test methodologies for
command and data handling systems as well as advancing
DSP and JTAG technology on space projects.

